237 research outputs found

    How willing/unwilling are luxury hotels' staff to be empowered? A case of East Malaysia

    Get PDF
    Empowerment is widely viewed as a dynamic concept to improve service quality and operational efficiency in the hospitality industry. The most effective approaches to empowering employees are not always clear. This paper contributes to the literature by seeking to understand the underlying factors that motivate and demotivate employees' willingness to become empowered. Qualitative data was collected through 22 semi-structured interviews with managers, supervisors and employees of four and five-star rated hotels in East Malaysia. In addition to the expected factors such as employees' acquired knowledge and psychological empowerment, employees' values and beliefs were also found to influence their willingness to become empowered. These findings are important in understanding employee perspectives of empowerment practices in operations contexts of East Malaysian luxury hotels

    Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine–peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data

    Get PDF
    Shallow marine to peritidal carbonates of the Triassic Csukma Formation in the Mecsek Mts. of SW Hungary are made up of dolomites, limestones and dolomitic limestones that show evidence of a complex diagenetic history. Integration of petrographic, conventional stable oxygen and carbon isotope, clumped isotope, and strontium isotope data with the paleogeography, paleoclimate, and burial history of the region revealed four major diagenetic stages. Stage 1: The peritidal carbonates were dolomitized penecontemporaneously during the Middle Triassic by refluxing evaporatively concentrated brines. Stage 2: Increasing burial during the Late Triassic–Jurassic resulted in recrystallization of the Kán Dolomite Member in an intermediate burial setting. Stage 3: During the Early Cretaceous seawater was drawn down and circulated through rift-related faults, causing renewed recrystallization of the Kán Dolomite Member as well as dolomitization of the Kozár Limestone Member and the underlying limestones in a deep burial setting, but only in the vicinity of the faults. Stage 4: During the Late Cretaceous and Cenozoic thrusting resulted in tectonic expulsion of basinal fluids and precipitation of multiple saddle dolomite cement phases near the faults. The results of this study imply that the clumped isotope method integrated with other geochemical data can successfully be applied to identify the nature and potential sources of extra-formational diagenetic fluids responsible for dolomitization and recrystallization. This study provides conclusive evidence for multi-phase dolomitization and dolomite recrystallization over several millions of years (Middle Triassic through Early Cretaceous) and several thousands of meters of burial in the Csukma Formation in SW Hungary. Furthermore, this study is the first to identify fault-controlled dolomitization by circulating Cretaceous seawater within Triassic carbonates of central Europe, further supporting the viability of the interpretation of dolomitization by seawater initially drawn down and then geothermally circulated through faults in extensional basins

    Acoustic properties in travertines and their relation to porosity and pore types

    Get PDF
    Sonic velocities of Pleistocene travertines were measured under variable confining pressures. Combined with petrographical characteristics and petrophysical data, i.e. porosity, permeability and density, it was determined that travertine porosity, pore types and cementation control compressional-wave (Vp) and shear-wave velocity (Vs). At 40 MPa confining pressures, Vp ranges between 3695 and 6097 m/s and Vs between 2037 and 3140 m/s. Velocity variations in travertines are, as with all carbonates, primarily linked to sample heterogeneity, i.e. differences in fabric, texture and porosity. They thus not necessarily emanate from changes in mineralogy or composition. Body wave velocities have a positive correlation with sample density and an inverse correlation with porosity. The travertines, sampled in extensional settings with normal faulting activity, define a specific compressional-wave velocity (y-axis) versus porosity (x-axis) equation, i.e. (log(y) = −0.0048x + 3.7844) that differs from the Vp-porosity paths defined by marine carbonates. Acoustic wave velocities are higher for travertines than for marine carbonates. Travertine precipitates form rigid rock frames, often called framestone, with large primary pores. Marine carbonates on the other hand often consist of (cemented) transported sediments, resulting in a rock frame that permits slower wave propagation when compared to the continental limestones.Acoustic velocity variations are linked to variations in pore types. Mouldic pores (macropores) show faster wave propagation than expected from their total porosities. Microporosity, interlaminar and interpeloidal porosity result in slower acoustic velocities. Framework pores and micro-moulds are associated with lowered acoustic velocities, while vug porosity is found above, on and below the general velocity-porosity trend. Not only the pore type, but also pore shapes exert control on body wave velocities. Cuboid-and rod-like pore shapes increase the velocity, while plate-and blade-like pore shapes have a negative effect on the velocity. The study demonstrates how seismic sections in travertine systems can contain seismic reflections that are not caused by non-carbonate intercalations, but relate to geobody boundaries, in which the seismic expression is function of porosity, pore types and shapes. This study provides and relates petrophysical data, i.e. porosity, permeability and acoustic velocities of travertines and is of importance for the interpretation of seismic reflection data in subsurface continental carbonate reservoirs

    A Model of Bacterial Intestinal Infections in Drosophila melanogaster

    Get PDF
    Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis

    Outcomes after primary and repeat thermal ablation of hepatocellular carcinoma with or without liver transplantation

    Get PDF
    Objectives Thermal ablation (TA) is an established treatment for early HCC. There is a lack of data on the efficacy of repeated TA for recurrent HCC, resulting in uncertainty whether good oncologic outcomes can be obtained without performing orthotopic liver transplantation (OLTx). This study analyses outcomes after TA, with a special focus on repeat TA for recurrent HCC, either as a stand-alone therapy, or in relationship with OLTx. Methods Data from a prospectively registered database on interventions for HCC in a tertiary hepatobiliary centre was completed with follow-up until December 2020. Outcomes studied were rate of recurrence after primary TA and after its repeat interventions, the occurrence of untreatable recurrence, OS and DSS after primary and repeat TA, and complications after TA. In cohorts matched for confounders, OSS and DSS were compared after TA with and without the intention to perform OLTx. Results After TA, 100 patients (56 center dot 8%) developed recurrent HCC, of whom 76 (76 center dot 0%) underwent up to four repeat interventions. During follow-up, 76 center dot 7% of patients never developed a recurrence unamenable to repeat TA or OLTx. OS was comparable after primary TA and repeat TA. In matched cohorts, OS and DSS were comparable after TA with and without the intention to perform OLTx. Conclusions We found TA to be an effective and repeatable therapy for primary and recurrent HCC. Most recurrences can be treated with curative intent. There are patients who do well with TA alone without ever undergoing OLTx

    Geobody architecture, genesis and petrophysical characteristics of the Budakalász travertines, Buda Hills (Hungary)

    Get PDF
    Abstract Subsurface Pre-salt Lower Cretaceous reservoir systems encountered offshore Brazil and Angola that consist of porous continental carbonates are difficult to access because of the limited core material that is under concession. Therefore, it is important to study comparable continental carbonate analogues, such as travertines and lacustrine carbonates, that potentially possess similar porosity and permeability characteristics. The Budakalász Pleistocene travertines (Buda Hills, Hungary) have been studied from a sedimentological, geochemical and reservoir properties point of view in order to understand their formation, petrophysical properties and 3D reservoir architecture. The three-dimensional geobody architecture of the Budakalász travertines illustrates the potential complexity of kilometre scale continental carbonate systems. Heterogeneous low angle sloping travertine lobes consisting of terrace slope, smooth slope and reed facies, are covered by a lime mudstone dominated, gastropod- and charophyte-rich marsh-pool facies. The observed facies represent a change from a subaerial travertine to a palustrine to lacustrine system, reflecting the ceasing of the system due to tectonic uplift. The dominant paleo-flow direction of the sloping lobes was towards the Danube depression, with several subordinate flow systems identified. The SrCO isotope geochemical signatures reflect travertine precipitation at ambient to superambient temperatures from meteoric derived fluids with a mixed CO2 origin of the marine carbonate substrate rocks, a potential atmospheric and a soil-derived component. Although the uniform signatures of the stable oxygen and carbon isotopes, in addition to petrographic observations suggest partial diagenetic isotopic resetting, the primary isotope trends seem to have been preserved. A reservoir-oriented facies evaluation in the three-dimensional geobody frame of the Budakalász carbonates based on porosity and permeability core plug analyses reveals their heterogeneous nature. Terrace, smooth slope and marsh-pool facies have considerable porosities of 5–15%, while the porosity of the reed facies may reach up to 27%. Permeability of all facies is strongly anisotropic, mainly controlled by a better connectivity along layer-parallel primary pores. The reconstruction of the 3D geobody architecture of the Budakalász lobe complex coupled to its geochemical and petrophysical properties provides a unique dataset that contributes in understanding fossil travertine systems

    Lack of Anatomical Concordance between Preablation and Postablation CT Images:A Risk Factor Related to Ablation Site Recurrence

    Get PDF
    Objective. Variation in the position of the liver between preablation and postablation CT images hampers assessment of treatment of colorectal liver metastasis (CRLM). The aim of this study was to test the hypothesis that discordant preablation and postablation imaging is associated with more ablation site recurrences (ASRs). Methods. Patients with CRLM were included. Index-tumor size, location, number, RFA approachs and ablative margins were obtained on CT scans. Preablation and postablation CT images were assigned a “Similarity of Positioning Score” (SiPS). A suitable cutoff was determined. Images were classified as identical (SiPS-id) or nonidentical (SiPS-diff). ASR was identified prospectively on follow-up imaging. Results. Forty-seven patients with 97 tumors underwent 64 RFA procedures (39 patients/63 tumors open RFA, 25 patients/34 tumours CT-targeted RFA, 12 patients underwent >1 RFA). Images of 52 (54%) ablation sites were classified as SiPS-id, 45 (46%) as SiPS-diff. Index-tumor size, tumor location and number, concomitant partial hepatectomy, and RFA approach did not influence the SiPS. ASR developed in 11/47 (23%) patients and 20/97 (21%) tumours. ASR occurred less frequently after open RFA than after CT targeted RFA (P20 mm and CT-targeted RFA as independent risk factors for ASR. Conclusion. Variation in anatomical concordance between preablation and postablation images, index-tumor size, and a CT-targeted approach are risk factors for ASR in CRLM
    corecore